266 research outputs found

    Direct N-body Simulations

    Get PDF
    Special high-accuracy direct force summation N-body algorithms and their relevance for the simulation of the dynamical evolution of star clusters and other gravitating N-body systems in astrophysics are presented, explained and compared with other methods. Other methods means here approximate physical models based on the Fokker-Planck equation as well as other, approximate algorithms to compute the gravitational potential in N-body systems. Questions regarding the parallel implementation of direct ``brute force'' N-body codes are discussed. The astrophysical application of the models to the theory of relaxing rotating and non-rotating collisional star clusters is presented, briefly mentioning the questions of the validity of the Fokker-Planck approximation, the existence of gravothermal oscillations and of rotation and primordial binaries.Comment: 32 pages, 13 figures, in press in Riffert, H., Werner K. (eds), Computational Astrophysics, The Journal of Computational and Applied Mathematics (JCAM), Elsevier Press, Amsterdam, 199

    Dynamical evolution of rotating dense stellar systems with embedded black holes

    Full text link
    Evolution of self-gravitating rotating dense stellar systems (e.g. globular clusters, galactic nuclei) with embedded black holes is investigated. The interaction between the black hole and stellar component in differential rotating flattened systems is followed. The interplay between velocity diffusion due to relaxation and black hole star accretion is investigated together with cluster rotation using 2D+1 Fokker-Planck numerical methods. The models can reproduce the Bahcall-Wolf solution fE1/4f \propto E^{1/4} (nr7/4n \propto r^{-7/4}) inside the zone of influence of the black hole. Gravo-gyro and gravothermal instabilities conduce the system to a faster evolution leading to shorter collapse times with respect to the non-rotating systems. Angular momentum transport and star accretion support the development of central rotation in relaxation time scales. We explore system dissolution due to mass-loss in the presence of an external tidal field (e.g. globular clusters in galaxies).Comment: 16 pages, 23 figures, 6 table

    A stochastic Monte Carlo approach to model real star cluster evolution, II. Self-consistent models and primordial binaries

    Full text link
    The new approach outlined in Paper I (Spurzem \& Giersz 1996) to follow the individual formation and evolution of binaries in an evolving, equal point-mass star cluster is extended for the self-consistent treatment of relaxation and close three- and four-body encounters for many binaries (typically a few percent of the initial number of stars in the cluster). The distribution of single stars is treated as a conducting gas sphere with a standard anisotropic gaseous model. A Monte Carlo technique is used to model the motion of binaries, their formation and subsequent hardening by close encounters, and their relaxation (dynamical friction) with single stars and other binaries. The results are a further approach towards a realistic model of globular clusters with primordial binaries without using special hardware. We present, as our main result, the self-consistent evolution of a cluster consisting of 300.000 equal point-mass stars, plus 30.000 equal mass binaries over several hundred half-mass relaxation times, well into the phase where most of the binaries have been dissolved and evacuated from the core. In a self-consistent model it is the first time that such a realistically large number of binaries is evolving in a cluster with an even ten times larger number of single stars. Due to the Monte Carlo treatment of the binaries we can at every moment analyze their external and internal parameters in the cluster as in an N-body simulation.Comment: LaTeX MNRAS Style 21 pages, 34 figures, submitted to MNRAS Nov. 1999, for preprint, see ftp://ftp.ari.uni-heidelberg.de/pub/spurzem/warspaper-98.ps.gz for associated mpeg-files (20 MB and 13 MB, respectively), see ftp://ftp.ari.uni-heidelberg.de/pub/spurzem/movie1.mpg and ftp://ftp.ari.uni-heidelberg.de/pub/spurzem/movie2.mp

    A stochastic Monte Carlo approach to model real star cluster evolution, III. Direct integrations of three- and four-body interactions

    Get PDF
    Spherically symmetric equal mass star clusters containing a large amount of primordial binaries are studied using a hybrid method, consisting of a gas dynamical model for single stars and a Monte Carlo treatment for relaxation of binaries and the setup of close resonant and fly-by encounters of single stars with binaries and binaries with each other (three- and four-body encounters). What differs from our previous work is that each encounter is being integrated using a highly accurate direct few-body integrator which uses regularized variables. Hence we can study the systematic evolution of individual binary orbital parameters (eccentricity, semi-major axis) and differential and total cross sections for hardening, dissolution or merging of binaries (minimum distance) from a sampling of several ten thousands of scattering events as they occur in real cluster evolution including mass segregation of binaries, gravothermal collapse and reexpansion, binary burning phase and ultimately gravothermal oscillations. For the first time we are able to present empirical cross sections for eccentricity variation of binaries in close three- and four-body encounters. It is found that a large fraction of three-body and four-body encounters results in merging. Previous cross sections obtained by Spitzer and Gao for strong encounters can be reproduced, while for weak encounters non-standard processes like formation of hierarchical triples occur.Comment: 16 pages, 19 figures, Latex in the MN style, submitted to MNRA

    Orbital evolution of the Carina dwarf galaxy and self-consistent star formation history determination

    Full text link
    We present a new study of the evolution of the Carina dwarf galaxy that includes a simultaneous derivation of its orbit and star formation history. The structure of the galaxy is constrained through orbital parameters derived from the observed distance, proper motions, radial velocity and star formation history. The different orbits admitted by the large proper motion errors are investigated in relation to the tidal force exerted by an external potential representing the Milky Way (MW). Our analysis is performed with the aid of fully consistent N-body simulations that are able to follow the dynamics and the stellar evolution of the dwarf system in order to determine self-consistently the star formation history of Carina. We find a star formation history characterized by several bursts, partially matching the observational expectation. We find also compatible results between dynamical projected quantities and the observational constraints. The possibility of a past interaction between Carina and the Magellanic Clouds is also separately considered and deemed unlikely.Comment: Accepted in A&
    corecore